DISCLAIMER

This material includes forward-looking statements based on assumptions and beliefs in light of information currently available to the Astellas and subject to significant risks and uncertainties.

This material contains information on pharmaceuticals (including compounds in research or under development) and other matters. Notwithstanding the foregoing, Astellas makes no representations, warranties, assurances or guarantees of any kind or nature whatsoever, whether expressed or implied, regarding the information in the materials (including, without limitation, no representations, warranties, assurances or guarantees as to the accuracy, sufficiency or completeness of any information, as to whether Astellas has rights to any such information or pharmaceuticals/compounds, as to whether any third party has or does not have any rights to any of such information or pharmaceuticals/compounds, as to the safety, efficacy, or effectiveness of any preparations described in this material, as to the regulatory status of or potential for regulatory agency action regarding any pharmaceuticals/compounds described in this material, or as to any uses, including unapproved uses, of any such preparations in any fashion). This material does not provide medical advice of any kind. Astellas undertakes no obligation or duty to change, remove, add, clarify, correct or update any information in the materials at any time.
ASTELLAS’ TARGET PRODUCT PROFILE

Target Product Profile for ASP3282

<table>
<thead>
<tr>
<th>Value proposition</th>
<th>• Reduction in incidence of postoperative atrial fibrillation (POAF) after cardiothoracic surgery without affecting cardiac function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected label (Indication)</td>
<td>• Novel prophylactic agent for POAF, administered during open chest cardiac surgery (i.e. CABG, valve surgery, and thoracic aortic surgery)</td>
</tr>
<tr>
<td>Mechanism of Action</td>
<td>• NGF neutralization (antibody Fab fragment)*</td>
</tr>
<tr>
<td>Target Patient Segmentation</td>
<td>• Patients receiving on-pump cardiac surgery (CABG, valvular, aortic)</td>
</tr>
<tr>
<td>Dosing</td>
<td>• Single administration into four epicardial fat pads prior to finishing surgery</td>
</tr>
<tr>
<td>Comparator</td>
<td>• Placebo</td>
</tr>
<tr>
<td>Efficacy (in pivotal study)</td>
<td>• 50 to 70% reduction in incidence of atrial fibrillation occurring within 7 days after surgery</td>
</tr>
</tbody>
</table>
| **Safety and Tolerability** | • No negative impact on cardiac function
• Adverse drug reactions similar to placebo |
| **Dosing and Administration** | • 124 mg (Based on current assumption, to be determined by future studies)
• Single administration by epicardial fat pad injections during surgical process |

ASP6294 is PEGylated form of ASP3282 with seven additional amino acids in the C-terminal; the cell line of ASP6294 is different from that of ASP3282
POSTOPERATIVE ATRIAL FIBRILLATION

Incidence

➢ The most common complication after cardiac surgery; incidence rate: approximately 30% after isolated coronary artery bypass grafting (CABG) surgery, 40% after valve replacements or repair, 50% after combined procedures

➢ Peak incidence: post operative day 2–4

Patients receiving on-pump cardiac surgery (CABG, valvular, aortic)

Prevention and treatment

➢ Pharmacological prevention (described in guidelines)

✓ β-blockers: risk of hypotension etc.
✓ amiodarone: risk of bradycardia, hypotension and arrhythmia etc.
→ NOT used aggressively due to concerns about perioperative hemodynamic instability

➢ Symptomatic treatment: pharmacological treatment (mainly with β-blockers and amiodarone) followed by electrical conversion

PROBLEMS CAUSED BY POSTOPERATIVE ATRIAL FIBRILLATION

Impact on patient outcomes

1. Low ejection fraction & hemodynamic risk
2. Risk of arrhythmia
3. Risk of hypotension
4. Renal complications
5. Risk of thromboembolism & stroke
6. Anticoagulant risks (bleeding complications, interaction with POAF treatment)

POAF

Impact increase by symptomatic treatment with β-blockers/amiodarone

Impaired postoperative recovery: different from chronic situation

Increased mortality

Impact on hospital resource and costs

- 48 additional ICU hours and $3,000 of increased ICU-related costs
- 3 additional hospital days and $9,000 of increased total hospital-related costs

“Top of mind issue” for cardiac surgeons

NGF UPSTREAM MECHANISM OF POAF

Mechanism of POAF
- Acute inflammatory response due to tissue injury caused by surgical procedure (e.g. pericarditis)
- Hyperinnervation of ganglionated plexi: Hyperactivity of cardiac autonomic nerve
- Triggered firing and reentry
 - Atrial fibrillation

Role of NGF
- NGF upregulation was confirmed in patients after CABG surgery. 1), 2)
- Increased NGF was also observed in animals at the inflamed myocardium. 3)
- NGF causes plastic changes and hyperactivity of cardiac autonomic neurons which leads to the onset of arrhythmia such as atrial fibrillation. 4)-6)
- Infusion of NGF to stellate ganglion caused AF in a canine model. 7)

Anti-NGF mAb targeted to GP is an attractive upstream approach for POAF prevention.

2) J Clin Exp Cardiolog 4:228 (2013)
GANGLIONATED PLEXI (GP) AS A TARGET

GP: regulator of intrinsic cardiac autonomic nervous system on atrial myocardium

- 10% sympathetic neurons (ad.)
- 10% parasympathetic neurons (ch.)
- 80% interconnecting neurons (ad.+ch.)

ad.: adrenergic, ch.: cholinergic

Relationship between ICNA and onset of POAF in patients after CABG surgery

ICNA: Intrinsic cardiac nerve activity

SKNA: Skin nerve activity

Heart Rhythm 14:1587-93 (2017)

Front Physiol 9:240 (2018)

Jpn J Electrocardiology 31:541-8 (2011)

Jpn J Electrocardiology 36:49-54 (2016)

Hyperactivity of the CANS:
- Acetylcholine shortens action potential
- Norepinephrine increases Ca²⁺ loading

3 Na⁺/1 Ca²⁺

Triggered firing

• Hyperactivity of the autonomic neurons causes excessive release of the neurotransmitters of autonomic nerves at multiple sites.
• This leads to triggered firing and reentry at multiple sites to initiate and maintain AF.
Binding affinity of ASP3282 for human, rat and swine NGF

<table>
<thead>
<tr>
<th>Species</th>
<th>Geometric mean KD value, in pmol/L (95% confidence interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>13.4 (8.86 – 20.2)</td>
</tr>
<tr>
<td>Rat</td>
<td>25.2 (9.46 – 67.0)</td>
</tr>
<tr>
<td>Swine</td>
<td>5.62 (4.13 – 7.66)</td>
</tr>
</tbody>
</table>

Inhibition activity of ASP3282 on human NGF-induced TrkA phosphorylation

ASPD3282 bound to human, rat and swine NGF and inhibited TrkA receptor activation.
PHARMACOLOGY (POAF ANIMAL MODEL)

Canine sterile pericarditis model: “a model with a clinical counterpart in postoperative open heart surgical patients” 1)

- Surgical operation
 - thoracotomy, pericardiotomy
 → talcum powder application on atrial epicardium for 5 h
 → pericardium & chest closure

- Right atrial burst pacing & evaluation of AF induction
 - 4 sites (appendage, low lateral, high lateral, free wall), 2 times/site (= 8 times in total)

PHARMACOLOGY

Local administration during surgery

- Injections into 4 epicardial fat pads located on ganglionated plexi (GP)
- Clinical experiences reported
- Simple and easy method for surgeons

Preventive effect of ASP3282 in a dog POAF model (at Day 4)

Evaluation on Day 4
Mean ± SE, n=6 (Vehicle & 30 mg/head) or 8 (Vehicle & 60 mg/head)
*p < 0.05, **p < 0.01 vs. Vehicle, Steel’s test

ASP3282 significantly prevented POAF after single local administration.

Minimum effective dose in dog model: 10 mg/head, while 3 mg/head also shows some activities
SAFETY AND TOXICOLOGY

ASP3282

<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Species</th>
<th>Route</th>
<th>Dose</th>
<th>GLP</th>
<th>ISN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety pharmacology</td>
<td>CNS, CV and respiratory</td>
<td>Cynomolgus monkey</td>
<td>IM/SC combo</td>
<td>20 mL/animal (1.5 mL/site IM x2 and 8.5 mL/site SC x2, 514 mg/animal)</td>
<td>Yes</td>
</tr>
<tr>
<td>Single and repeated-dose toxicity</td>
<td>Single dose and 4-week</td>
<td>Cynomolgus monkey</td>
<td>IM/SC combo</td>
<td>20 mL/animal (1.5 mL/site IM x2 and 8.5 mL/site SC x2, 514 mg/animal)</td>
<td>Yes</td>
</tr>
<tr>
<td>Other</td>
<td>Tissue cross reactivity</td>
<td>Human</td>
<td>in vitro</td>
<td>2, 20 µg/mL</td>
<td>Yes</td>
</tr>
</tbody>
</table>

IM: intramuscular, SC: subcutaneous

- No treatment-related systemic effects in the single and 4-week repeated toxicity study in cynomolgus monkeys.
- No effects on the safety pharmacology parameters in the monkey study.
- No adverse local irritation after single or repeated IM and SC dosing in the monkey study.
- Stereology examinations and neuronal immunostaining were conducted in the 4-week monkey study. No evidence of cell death or atrophic changes in dorsal root ganglia (DRG) and cranial cervical ganglia (CCG).
- No in vitro cross-reactivity to human tissues.
SAFETY AND TOXICOLOGY

ASP3282

Histopathology of the injection sites and electrocardiography were examined in the pharmacology study in canine sterile pericarditis model

<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Species</th>
<th>Route</th>
<th>Dose</th>
<th>GLP</th>
<th>Study No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology</td>
<td>Sterile Pericarditis Model</td>
<td>Beagle dogs</td>
<td>fat pad in heart</td>
<td>vehicle, 30, 60 mg/head</td>
<td>No</td>
</tr>
</tbody>
</table>

- Histopathology: conducted at vehicle and 60 mg/head group, n=5/group
 - The incidence and severity of histopathological changes were comparable between those groups.
 - No histopathological changes were noted in the ganglion cells.
- Electrocardiography (ECG): conducted at vehicle (n=8), 30 (n=6) and 60 (n=8) mg/head group, 24hr monitoring at day 0-1
 - The incidence and severity of ECG changes were comparable between those groups.
SUMMARY OF PRELIMINARY US MARKET RESEARCH

Current situation & Unmet needs

➢ On average, 28% of CABG and/or heart valve replacement patients develop POAF. 93% of POAF patients receive either pharmacological or electro-cardio interventions.

➢ POAF is considered to be a “top of mind issue” for many doctors in terms of both impact on patient outcomes (e.g. thrombosis, stroke and heart failure risk) and impact on hospital budget and efficacy (e.g. length of hospital stay).

➢ Prevention was regarded as very important. Doctors were mainly dissatisfied with currently available prophylactic therapies.

Target product profile

➢ The initial reactions of all respondents to Product X (reduction of POAF by half and ICU/hospital stay and costs, single epicardial administration using a spray device) were positive. They intend to use it for 87% of their patients on average.

➢ The cost for Product X was expected to be bundled within the existing procedure DRG. The price range ($500-$1,000) based on the assumed cost-saving effect by POAF prevention was considered reasonable.

*respondents: 15 doctors (12 cardiac surgeons + 3 anesthesiologists) and 5 payers (cardiac surgery department heads)

Source: Anterio “POAF Study in the USA - Results Report” (March 2017)
COST REDUCTION FROM POAF PREVENTION

Assumptions:
incidence of POAF: 30%, additional hospital cost in POAF patients: $9,000 → additional hospital cost in overall (POAF & non-POAF) patients: $2,700/procedure on average

Cost reduction by prevention of AF:
POAF incidence 30% → 15%: $1,350/procedure → 7.5%: $2,025/procedure
A price less than $1,350 or $2,025 will bring a profit to the hospital if the POAF incidence is reduced by half or three quarters, respectively.
INTELLECTUAL PROPERTY

Patents covering ASP3282

1) WO2016/190263 (filed on May 20th, 2016)

2) WO2019/221097 (filed on May 14th, 2019)